Chevron Left
Back to Mathematics for Machine Learning: Linear Algebra

Learner Reviews & Feedback for Mathematics for Machine Learning: Linear Algebra by Imperial College London

4.6
stars
12,550 ratings

About the Course

In this course on Linear Algebra we look at what linear algebra is and how it relates to vectors and matrices. Then we look through what vectors and matrices are and how to work with them, including the knotty problem of eigenvalues and eigenvectors, and how to use these to solve problems. Finally we look at how to use these to do fun things with datasets - like how to rotate images of faces and how to extract eigenvectors to look at how the Pagerank algorithm works. Since we're aiming at data-driven applications, we'll be implementing some of these ideas in code, not just on pencil and paper. Towards the end of the course, you'll write code blocks and encounter Jupyter notebooks in Python, but don't worry, these will be quite short, focussed on the concepts, and will guide you through if you’ve not coded before. At the end of this course you will have an intuitive understanding of vectors and matrices that will help you bridge the gap into linear algebra problems, and how to apply these concepts to machine learning....

Top reviews

DV

Jun 24, 2019

This was a terrific course; the instructors' are passionate and knowledgeable about the course material, the assignments are engaging and relevant, and the length of the videos feels "just right".

AS

Jul 11, 2019

It's a nice course but instructors should go in more details. It's mostly high school mathematics. I was expecting undergraduate level Linear Algebra. Otherwise it was a good learning experience.

Filter by:

2376 - 2400 of 2,480 Reviews for Mathematics for Machine Learning: Linear Algebra

By Adam R

Nov 16, 2018

Some of the quizzes go beyond what is in the videos and often spent ages on them.

By Nicholas K

Apr 20, 2018

Enough gaps that I finished feeling like I really had no idea what was going on.

By David R M

Jul 13, 2020

Requires an understanding of python that doesn't seem to be expressed anywhere

By Jose H C

Dec 19, 2019

I did not see any specific application of what was learned to Machine Learning

By Thomas K

May 4, 2022

Covered topics sup up useful framework that give robust starting point

By Tory M

Sep 3, 2020

All in all this course served as a good refresher for linear algebra.

By Gary M F T

Oct 28, 2020

Esta en el idioma inglés. Seria factibles en el idioma español

By Alejandro T R

Aug 2, 2020

Really difficult to understand the explanations of the course.

By Ayala A

Jul 24, 2020

The course is good but the explanations are not clear enough.

By Akshat B

May 18, 2023

The content is good, but the support could have been better.

By Ninder J

Jun 17, 2019

not well explained...Rather than this go for khan's academy

By rajiv k K

Jul 21, 2019

Good for rivision but I will not recommend to beginner.

By omri s

Oct 25, 2019

Good, but a lot of stuff is not explained in detail

By สิทธิพร แ

May 29, 2020

some lessons don't cover knowledge for assignment

By Flávio H P d O

May 11, 2018

explanation not very clear

not enought examples

By Rosana J B

Mar 1, 2021

muy confuso el sistema de envío de tareas

By Hiralal P

May 4, 2020

they should provide more examples

By Neha K

Oct 9, 2018

The style of teaching is great.

By Lieu Z H

Jul 25, 2019

found the course too basic

By Jadhav J N J

Mar 2, 2020

Good Teaching

By Néstor E S

Sep 1, 2025

no es bueno

By Rafael L A

Jul 9, 2020

challenging

By Navya V

Jul 18, 2020

good

By Sakshi T

Jan 28, 2023

NA

By Fuad E

May 22, 2019

It is a little messy: there are no clear definitions of Vector Space, Normed Vector Space, Euclidean Vector Space. Functions as COS and SIN are used to show basic concepts, orthogonal base, and so on. "Projection" concept always relies on base being orthogonal, projection being under 90 degree (what is 90 degree in vector space?), and space being Euclidean, although it is much simpler and applicable for just Vector Space (space without "norm" defined). Good introductory course for high-school; bad for University. Good for kids who just finished learning Pythagoras Theorem, SIN, COS, and basis of Euclidean geometry. Example of house (with number of rooms which is positive Integer number, and price which is positive Decimal) is not really a vector. Examples of non-Euclidean spaces and their applications in machine learning not provided (geometrical deep learning on graphs for example). Basic course for those completely unfamiliar with what "vector" is. Provided tests in Python are confusing because in the context we write vectors (and "base" vectors which matrix consists from) vertically, and in Python - horizontally. For example, [[1,2],[3,4]] is matrix, but it won't transform base vector [1,0] into [1,2]. This is confusing and should be mentioned before test begins.

Thank you for helping me to recall this knowledge. I finished three weeks; I may need to update review later.