University of Colorado Boulder
Introduction to Machine Learning: Unsupervised Learning

Gain next-level skills with Coursera Plus for $199 (regularly $399). Save now.

University of Colorado Boulder

Introduction to Machine Learning: Unsupervised Learning

Daniel E. Acuna

Instructor: Daniel E. Acuna

Included with Coursera Plus

Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

1 week to complete
at 10 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

1 week to complete
at 10 hours a week
Flexible schedule
Learn at your own pace

What you'll learn

  • Explain the goals, challenges, and appropriate use cases of unsupervised learning.

  • Apply dimensionality reduction techniques to analyze and visualize high-dimensional data.

  • Discover and interpret structure in data using clustering methods.

  • Address missing data and recommender system problems using matrix completion techniques.

Details to know

Shareable certificate

Add to your LinkedIn profile

Recently updated!

January 2026

Assessments

6 assignments

Taught in English

See how employees at top companies are mastering in-demand skills

 logos of Petrobras, TATA, Danone, Capgemini, P&G and L'Oreal

Build your subject-matter expertise

This course is part of the Machine Learning: Theory and Hands-on Practice with Python Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate

There are 5 modules in this course

Welcome to Introduction to Machine Learning: Unsupervised Learning. In this first module, you will explore how machine learning can uncover hidden patterns in data, without relying on labeled outcomes. You will learn how unsupervised learning differs from supervised learning, and why the absence of a “correct answer” makes interpretation both powerful and challenging. Through Principal Component Analysis (PCA), you will discover how to reduce the dimensionality of complex datasets while preserving the most important variation. You will compute principal components, interpret explained variance, and visualize high-dimensional data in two dimensions. By the end of this module, you will have a hands-on understanding of how PCA can reveal structure in seemingly chaotic data.

What's included

9 videos5 readings2 assignments1 programming assignment

Now that you understand the basics of Principal Component Analysis, this module focuses on how to apply it thoughtfully. You will learn how to decide how many components to retain by examining the proportion of variance explained and interpreting scree plots. You will also explore how to interpret principal component loadings to understand what each component reveals about the original features. Through hands-on practice, you will see how PCA can be used not only for visualization but also as a powerful pre-processing step before supervised learning. By the end of this module, you will be able to reduce dimensionality with purpose and insight.

What's included

12 videos1 reading1 assignment1 programming assignment

This module introduces you to the world of clustering, where the goal is to uncover natural groupings in data without any labels. You will learn how the k-means algorithm partitions observations into clusters based on similarity, and how it iteratively refines those groupings by updating centroids. Along the way, you will grapple with the challenge of choosing the right number of clusters and explore heuristic tools like the elbow method. Through hands-on work, you will evaluate clustering results and interpret what each group represents in context. Clustering is as much an art as it is a science, and this module will help you build intuition for both.

What's included

8 videos1 reading1 assignment1 programming assignment

In this module, you will explore hierarchical clustering—a method that builds nested groupings without requiring you to choose the number of clusters in advance. You will learn how the agglomerative approach works step by step and how to interpret dendrograms to uncover meaningful structure in your data. Unlike K-means, hierarchical clustering offers a full picture of how observations relate to one another at different levels of similarity. You will also examine how scaling and distance metrics can influence clustering results, and why evaluating clusters is often more subjective than definitive. This module encourages you to think critically about what makes a clustering solution useful, not just mathematically valid.

What's included

4 videos1 reading1 assignment1 programming assignment

This module introduces low-rank matrix completion as a principled approach to handling missing data and powering recommender systems. You will learn how PCA can be used as a matrix approximation tool to reconstruct missing entries, implement an iterative completion algorithm, and validate model choices via masking. A compact case study demonstrates practical trade-offs with small p, and the module concludes by mapping the same ideas to user–item recommendation with attention to preprocessing, evaluation, scale, and ethics.

What's included

5 videos1 reading1 assignment1 programming assignment

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.

Instructor

Daniel E. Acuna
University of Colorado Boulder
3 Courses62 learners

Offered by

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Frequently asked questions